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Abstract

In this paper, a Topp-Leone Weibull distribution is presented as a composite distribution. Bayes
estimators of the unknown parameters, reliability and hazard rate function of the Topp-Leone
Weibull distribution based on dual generalized order statistics are derived. The estimators are
obtained under the squared error loss function as a symmetric loss function and the linear
exponential loss function as an asymmetric loss functioﬁ. The results are specialized to lower
record values as special case of the dual generalized order statistics. In addition, crg;dible intervals
for the model parameters are constructed. A numerical example is given to illustrate the theoretical
results and an application using real data is used to demonstrate how the results can be used in

practice.

Keywords: Topp-Leone distribution; Topp-Leone Weibull distribution, Linear exponential loss

function; Dual generalized order statistics; Lower record values; Bayesian estimation.

1. Introduction

Topp-Leone (TL) distribution was proposed by Topp and Leone (1955);-as an alternate model
failure data. It is a continuous unimodal distribution with bounded support; therefore it is
appropriate for modeling lifetime of distributions with finite support such as limited power supply,
maintenance/repair resource, or design life of the system.

The probability density function (pdf) of Topp-Leone distribution is given by

: _ 2a x x x\? T

f(x,B,b)-T(l—;)(ZE—(E)) ) 0<x<ba>0. )
The cumulative distribution function (cdf) of Topp-Leone distribution is as follows:

0, x <0,

9 e x x 2\* 2)
Fes0,0)=1(22-(2)) , o<x<b, (
1, x>0,
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where a is a shape parameter and b is a scale parameter, if a is restricted to be in (0,1), then the
distribution function in (1) is J-shaped distribution.

Nadarajah and Kotz (2003) showed that TL distribution have bathtub failure rate function with
widespread applications in reliability. Some attractive reliability properties were_provided by
Ghitany et al. (2005), such as the bathtub-shape hazard rate, decreasing reversed hazard rate,
upside-down mean residual life, increasing expecied inactivity time. Also, Zghoul (2010) studied
order statistics from TL distribution and provided expressions for moments of ordered statistics
from TL distribution.

Feroze and Aslam (2013) derived Bayesian estimation and prediction using a couple of non-
informative priors under complete and Type I censored samples. Sindhu et al. (2013) obtained
Bayes estimators for the shape parameter and credible intervals based on trimmed samples using
different priors.

~Maximum likelihood (ML) and Bayesian estimation of the parameters of TL distribution, based on
lower record vaiues under symmetric loss function were obtained by Li (2016). Also, he derived
the empirical Bayes éstimators. Bayesian estimation of the shape parameter, under simple and
mixture priors and different loss functions, is presented by Sultan and Ahmad (2017). [For more
details on TL distribution see, Zghoul (2011), Geng (2012), Khan and Khan (2015) and Bayoud
(2015)].

Aryal et al. (2016) introduced the TL generated Weibull distribution and derived some structural
properties, also they used the ML method to obtain the estimators of the parameters.

The concept of generalized order statistics (gos) was established by Kamps (1995 a, b) to unify
several concepts that have been used in statistics such as ordinary order statistics, record values
(Rv), sequential order statistics, progressive Type II censored data, Pfeifer's record model and
others. The concept includes almost the models of ordered random variables which are arranged

in ascending order of magnitude.

Pawlas and Szynal (2001) introduced the concept of Dual Generalized Order Statistics (dgos),
which includes the order random variables arranged in decreasing order of magnitude. Burkschat
et al. (2003) extensively studied and discussed dgos to enable a common approach to descending
order random variables as reversed order statistics, lower records and lower Pfeifer records. They

also established the connection between gos and dgos as follows:

143 )
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If X(U,n,,k),.., X(n,n,mMk) be the gos based on continuous cdf G and

Xa(4,n, M, k), ..., X;(n,n, L, k) be the dgos based on a continuous cdf F.
Then

FXa(r,n,m,E))NE A - 6(X(r,n, 1, k))), 1<r<n
Therefore, gos is used when (I-F(x)) is in closed form and dgos is used when F(x)'is in closed
form.
Let the random variables, X(1,n,m,k), X(2,n,m,k),..., X(n,n,m, k) be n dgos from an
absolutely cdf, F(x), and pdf, f{x), then their joint pdf has the form
_ k-1
frOmmiXomm (x| = k () A FED) " Gl (Fe)) T f@), 3
where F71(1) = %, ... = x,, = F~1(0),
and
n€Nk =1,my,..,m, 4 =m,meER be the parameters such that
Yr=k+(—7r)m+1) =1, foralll<r<n
The marginal pdf of  th dges X (r,n,m, k), 1 < r < nis given by; [See Khan and Khan (2015)]
FEPMO ) = ZRFEOIF () g (F(0)) “@
and the joint pdf of X (r,n,m, k) = x and X (s,n,m, k) =y, —o < x < y < oo, is given by
fX(r,n,m,k)....,X(S.nm,k) Ce,y) = G (F(x))mf(x)g;'n—lp(x)

(r-D!(s—r-1)!

s—r—

x [T (FO)) = k] (FO) F), 5)

where Cry = [Tj217j, Gn(*) = hp(x) =R (1), X € [0,1),

2 1
hm(x)={ - ' ’”1. ©)

Lower records are of great interest and importance in many areas of real life applications involving

data relating to weather, sports (athletic events), industry, economics, biomedical sciences,
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engineering, the environmental sciences, actuarial sciences, management sciences, social sciences
and life testing; for example the lowest stock markets figure, also they are useful in reliability

theory, meteorology, hydrology, seismology and mining . [See Khan and Faizan (2014)].

The joint pdf of the first n lower record values Xacy Xaczy o Xagy whenm = —land k=1

in (3) is as follows:

G
fa@eXa(x, x4 ) = (m m) fx, X > Xpegy o> X @)

The rest of this paper is organized as follows: Section 2 presents Topp-Leon Weibull distribution
as a composite distribution. Bayesian estimation based on dgos; under squared error and linear
exponential loss functions, is discussed in Section 3. Also, Bayes estimators for the unknown
parameters, reliability function (tf) and hazard rate function (hrf) are derived based on lower
records, in Section 4. In Section 5, 2 numerical example, through simulated and real data, are given

to illustrate the theoretical results.

2, Topp-Leone Weibull Distribution

Considering b=1 in (2); without any loss of generality, a random variable X is distributed as the

TL distribution with parameter a denoted by X~TL(a) with a cdf

Hyy(x) = Hr (x; @) = (2x — x2)7, 0<x<1la>0. ®
The corresponding pdf is
hr(a)=2a(1-x)2x—x3)*1 0<x<1,a>0. ®

The rf and the hrf are, respectively, given by

RTL(X; “) =1~ (Zx e XZ)(.Z’ (10)
and

T

(145 )
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2a(1—x)(2x—x2)%"? (1

hrTL(X; a) = 1-(2x—x2)2

On composition of distribution functions, see AL-Hussaini (2012). A composition of H, given by

(8) and a cdf G, with positive support, yields a new cdf, given below

Ft) = H(6®) = 61 — (6(©)D)%, (12)
In particular, if G is Weibull distribution; denoted by W ~(4,9), with cdf as
Gt) =6t 2,9) =1 —exp(—(A)?),t > 0,4,9 >0 (13)

Substituting (13) in (12), the cdf for Topp-Leone Weibull distribution (TLW (a, A,9)) is given by

FTLW(t) = FTLW(t; a, l, 19) = (1 - exp(—-Z().t)ﬁ))“, t>0, a,;l,ﬂ > 0. (14)
The pdf, corresponding to the cdf given in (14), is as follows:
friw(® &, 2,9) =2 a9 A (At)*exp(—2(A6)?) (1 — exp(—2()*))*

t>0, a,19>0, (15)

where a, ¥ are shape parameters and A is a scale parameter.

Figures 1 and 2, describe the PDF of TLW distribution for different parameter values.

it
3_0ﬂn 30
i —a
25 JER— 25 -—b
- -
\ 20
20 7 . S
o 1
\
10 -~
o5}/
ls / .........
0 1 2 3 0 2 3

Figure 1

Figure 2

Plots of the probability density function of TLW distribution
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In Figure 1, the TLW density is monotonically decreasing at = 0.5,0.7,0.8,0.9, 6 =
0.4,0.6,0.75,0.8, 1 = 0.6,0.7,0.9,1, while in Figure 2 it has unimodal, approximately
symmetric and negative skewed curves at @ = 2,3,4,50 =+2,3,5,1=1111

The 1f and hrf for TLW distribution are, respectively, as :

Ryuw(t; a,2,9) = 1 — (1 — exp(-2()?))%, £>0, a,1,9>0, (16)
and

v— i - » Jyya—:
Ry (6 @, 4, 9) = 252A00 T mp2QNNU-enCIGRNTZ, ¢50, g, 4,8 >0, (7

1-(1-exp(—2(10)9))"

Figures 3 and 4, show the hrf of TLW for different parameter values.

L
n

The hrf’s of Topp-Leone Weibull distribution for different parameter values

Figures 3 and 4 show that the hrf of TLW for different parameter values is quite flexible for
modeling survival data. The hrf is increasing then decreasing at a = 38,12,16,20, 8 =
0.5,0.7,09,1.1, 1= 26,8,4,2 and at a = 2,0.001,0.001,0.001,6 = 0.5,0.7,0.9,1.1, A=
6,6,4,2. The TLW represents most major hazard shapes.
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3. Bayesian Estimation Based On Dual Generalized Order Statistics

In this section, Bayesian approach is used to estimate the parameters, if and hrf of TLW
distribution based on dgos; under squared error loss (SEL) function and Linear exponential
(LINEX) loss function, using informative prior. Also the credible intervals for the parameters, rf

and hrf are obtained.

3.1 Bayesian estimation under squared error loss function

Bayes estimators of the parameters, rf and hrf of the TLW distribution are considered under SEL
function as a symmetric loss ﬁmctidn.

Suppose that T (1, n, m, k), T (2, n, m, k), ..., T(n, n, m, k) be n dgos from TLW distribution, the
likelihood function can be obtained by substituting (14 ) and (15 ) in (4) and written as

n-1
L(e|t) «x H(u — exp(—2(At)®)™ @ 9A(AL;)? exp(—2(At)?)
i=1

x(1- EXP('“Z(ﬂti)‘?))“_l).
x (1 — exp(—=2(16,)%)) ™ @ 9A(AL,)"~* exp(—2(At,)?)

X (1 - exp(=2(2t)")*™)

= g" §nnd n t;9% exp(—2(At)?) (1 — exp(—2(At;)"))**

i=1

x [T (1 — exp(=2Qe)?))][(1 — exp(-2(Ae)" 0], (20)

Considering the prior knowledge of the vector of parameters ©, is adequately represented by

conjugate prior which is the gamma distribution with the hyper parameters a;, b; and pdf as below

b‘] aj—-1 ~b:0; .
L_g / - ! I ’ Qj,a},b] >0, ] = 1,2,3.

g(gl’ a]’bl) & T(a;) j

where 8, = a, 8, = Aand 8; = 9, which are independent.

Then the joint prior distribution of the unknown parameters has a joint pdf given by

148
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b‘.li el gm
(0 01y) = [ ) 0> 01y >0. e

Hence, the joint posterior distribution can be derived using (20) and (21) as follows:

(@ | t) « L(8|t) m(6); a;, by)

o« a,n+a1—1 ﬂn+a2—1/1m9+a3—1

X [l—[ t;9~ exp(—2(At)® — bya — by9 — b3A)(1 — exp(—=2(At;)?))* 1

i=1
x [ - exp(¥-2(lti)"))m“][(1 — exp(—2(1t,)?))**-V]. (22)

The marginal posteriors of @, 1 and 9 can be obtained by integrating the joint posterior distribution
given by (22) with respect to the other parameters, that is the marginal posterior density is given
by

w(@1t)=[Jp, n(&1t)db;, ij=123 i#] 6, > 0. @3)

Under SEL function the Bayes estimators; which are the mean of the posterior distribution, can be
derived as follows:

G =E@|0) = J, 6@ d6;,  j=123 >0, 2

where 91 =a, 92 = Aand 93 =,

The Bayes estimators of the rf and the hrf under SEL function; which are the posterior
expectations, can be obtained as follows:

Risey(®) =E(R®)|) = f, R®OIn(&1t) do

= f (1 - (1 - EXp(—Z(ltn)ﬂ))a) gtai—1 gn+az=1)nd-az-1
e

X [ﬂ t;9"1 exp(=2(At,)? — bya — b,9 — bsA)(1 — exp(=2(At)"))* ™

i=1
x [TI52(1 — exp(=2(At)®))™][(1 — exp(—2(At,)?))**~ V] d@ ,
(25)

and
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Higey (® = E(®)]8) = J, h@® (@11 e

B f 2 @9 1 ()"~ texp(=2(At,)°) (1 — exp(—2(At,)°))*™*
"o 1— (1 — exp(—2(At,)?))*

x [ﬂ ;71 exp(~2(At)? — bya — byd — bsA)(1— exp(—2(At)?)*

i=1

x A1 — exp(—2(t) )™ [ — exp(=2@a) )] dO . (26)

Equations (24-26) can be solved numerically to obtain the Bayes estimates of the parameters, rf
and hrf of the TLW distribution based on SEL function.

3.2 Bayesian estimation under linear exponential loss function

Although SEL function is the most loss function used in literature and its symmetric nature gives
equal weight to over and under estimation of the parameters, in life testing over estimation is more
serious than under estimation or vice versa.
Varian (1975) introduced the LINEX loss function to be of the form

{(A) = bo[e®® —cA—1],
where ¢ # 0,by > 0,and A = 11(0) — u(®).
Al-Hussaini and Hussein (2011) suggested using the squared exponential (SQUAREX) loss
function with the form

(D) = bp[e® —dA* — cA—1],
where d # 0, by, ¢ and A are as before.
The SQUAREX loss function reduces to the LINEX loss functlon if d =0, but if c =0, the
SQUAREX loss function reduces to SEL function.
The LINEX loss function will be applied to estimate the parameters, rf and hrf of TLW distribution
based on dgos, then the Bayes estimators of u(@), a function of the vector of the i)arameters 0, is

given by
2,(6) = ~2mE(e@|t) = —2in [, e @ n(eft)de, @7

where n(_Q I E) is the posterior pdf of the vector of the parameters @, given the data t,
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_Q =a, A,'l9 ,RTLw(t)Or hTLW(t) and dg =da dAdd. (28)

In parallel with the steps used for derivation of the Bayes estimators of the parameters, rf and hrf
“under SEL function, the Bayes estimators of @ = (6,65, 65)’, 1f and hrf under the LINEX loss

function, based on dgos are given, respectively, by

Gianx) = _Tlln[E (e=¥])] = _Tlln[fow e~imj(elt)dg] j=123 @9
Runx () = In[E(e=O)e)] = ZFin [f, e~*®.x(8 | £) dg), 69
and

hx @) = —Tlln[E(e_Ch(t)lt)] = _Tlm [fe e—Ch(t)'"(Q I Q d@], 31

where 6, =a, 0; =2and0; =9 and [, =f:f;°f;° and ¢ # 0.

¢ Credible intervals based on dual generalized order statistics

The Bayesian analog to the confidence interval is called a credibility interval. In general,
L®,U®) is 100(1 — w)% credibility interval of © if

PL(t) <@ < U@ = [P (el) do =1~ w. 32
Using the marginal posterior distribution given by (23), then a 100(1 — )% credibility interval

for 6; based on dgos is (Lj (%), U](g)), where

P& >0l = [ ym(elt)dg =1-2, j=123, (33)
and
Plo, > u@ld = ym@lddg =2, j=123

4. Bayesian Estimation Based on Lower Record Values

The lower record values can be obtained from dgos as a special case by taking m; = —1,
Vi=1,..,1% =1and k = 1. Bayes estimators of the parameters, rf and hrf based on lower
record values from TLW distribution are derived under the SEL function and LINEX loss function.

Also the credible intervals of the parameters are considered.

The joint posterior distribution based on lower records is as follows:
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Tt**(@ I t) = q"ta1-1 gntaz—1 nd-az-1 [H 1(1 _ exp(—Z(Atl)"))‘“]
x [Ty 22 exp(—2(At)° — bya — b9 — b3A)(1— exp(—2(At)?)*],
(€0

The marginal posteriors of @, 1 and 9 can be obtained by integrating the joint posterior distribution
given by (34) with respect to the other paranieters, that is the marginal posterior density is given
by

(81t = flo, = (@18)ad;, ij=123 i%j, 6>0. (36)

Under SEL function the Bayes estimators based on lower records can be derived as follows:
Gom =E@G|t) =], m(@1£)ab;, j=123 >0, 37)

where 8, =a, 6, = Aand 03 =9.

Under LINEX loss function, the Bayes estimators of ® = (684, 8,, 83)’, rf and hrf based on lower

record values are given, respectively, by

Banxy = :czln[E(e_ce"IE)] e _Tlln[fome bimr(@le)dg) =123 (8
Runn () = ZIn[E(e~RO|¢)] = 2] [fg e~ RO, 7(8 | £) de) (9
and

Rann(® =Zm[E(e="Ot)] = 2 [ ly e=hO. 77 (@ | £) de), (40)

where [, = f:of;of: and ¢ # 0.

e Credible intervals based on Lower records
A100(1 — w)% credibility interval for ; based on lower record values is (L, i (_t), Uy (g)) can

be obtained through using steps analogous to those used for obtaining credible intervals based on
dgos.
In general, (L;(8), U;(»)) is 100(1 — w)% credibility interval of @ if

152 )
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PlL(®) <@ <u(®)ld = [19n(ele) do = 1 - . @1)

Using the marginal posterior distribution giverrby-(31), thena 100(1 — w)% credibility interval
for 6 based on lower record values is (L, i(£), Uy (_)) where

Pl > 1 = [y (el =1-2, =123, @
and
p[g] > Uli@ld = f;:@ n]f*(@ I £) dg; = .‘;l’ j=123. . 43)

To obtain the Bayes estimates of the parameters, rf, hrf and the credible intervals; Equations (38)-
(43) should be solved numerically.

Special cases:

¢ Note that the results obtained in this paper for the TLW distribution give
corresponding results for the TL exponential distribution, if 9=1.

¢ Results obtained in this paper for the TLW distribution give corresponding results
for the TL Rayleigh distribution, if 9=2 .

5. Numerical Illustration

This section aims to investigate the precision of the theoretical results of Bayesian estimation under

SE and LINEX loss functions, based on lower record values through simulated and real data.

5.1 Simulation

In this subsection, Monte Carlo simulation study is conducted to illustrate the performance of the
presented Bayes estimates on the basis of generated data from the TLW dlStI]butIOI‘l Bayes
averages of the parameters, rf and hrf based on lower record values are computed. Moreover,
credible intervals of the parameters are calculated, all the results are obtamed using R
programming language.

a. For given values of a,1and 9 tandom samples of size n are generated from TLW

distribution observing that if U is uniform distribution (0,1), then

(153 )
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r= ;[zog (1 -u%)"ér, (44)

b. For each sample size n, consider the first observation is the first lower record value
t; dénote it R,, which is considered as the maximum and the second observation t, denote
it R, which is smaller than the maximum (¢, > t;) record and if t; < t; ignore it and
repeat until ybu get the sample of Rv_records.

¢. For the number of the Rv records, the initial values of the parameters a, A and ¥ and the
hyper parameters of the prior distribution, the Bayes averages of the parameters, rf and hrf
under SE and LINEX loss functions are computed. The computations are performed using
R packages.

d. Table 1 in the appendix presents the Bayes averages using SEL function and gamma prior,

JFREan SqUare erTor ;
YImean Square 7% and the lengths of 95% credible

their biases, relative errors (RE) = :
population paramter

interval for the parameters with the true values a = 4.8, ¥ = 0.54 and 4 = 0.05, based
on lower records Rv=(5, 7, 10) and replications NR = 10000.

e. Table2 in the appendix displays the Bayes averages using LINEX loss function and gamma
prior, their biases, REs and the lengths of 95% credible interval for the parameters with the
true values a = 4.8, 9 = 0.54 and 1 = 0.05, based on lower records Rv=(5, 7, 10),
¢ =(~0.1,0.01,0.1) and number of replications NR = 10000.

5.2 Real data

The main aim of this subsection is to demonstrate how the theoretical results can be used in
practice. The data set used in this application consists of the waiting times between 65 consecutive
eruptions of the Kiama Blowhole. The Kiama Blowhole is a touristic attraction located nearly 120
km to the south of Sydney. The swelling of the ocean pushes the water through a hole bellow a
cliff. The water then erupts through an exit usually drenching whoever is nearby. The time between
eruptions on July 12, 1998 were recorded using a digital watch by Professor Jim Irish and were

obtained from StatSci.org in June 28, 2012 at http:/www.statsci.org/data/oz/kiama.html.
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The actual data are:
83, 51, 87, 60, 28, 95, 8,27, 15, 10, 18,16, 29, 54, 91, 8,17, 55, 10, 35, 4%, 77,36, 17, 21, 36, 18,
40, 10, 7, 34, 27, 28,56, 8, 25, 68, 146, 89, 18, 73, 69, 9,37,10, 82,29, 8, 60, 61, 61, 18, 169, 25,
8,26,11, 83,11, 42, 17,14, 9, 12.
The Kolmogorov-Smirnoy goodness of fit test is applied to check the validity of the fit of the
model. The p valye is 0.2106, shows that the model fits the data very well.

a. Table 3 in the appendix presents the Bayes estimates using SEL function and gamma prior,

their biases and REs, based on lower records Rv=5 .

their biases and REs, based on lower records Rv=5 and ¢ = (=0.1,0.01,0.1).

39 Concluding Remarks

® From Tables 1 and 2, it is clear that the Bayes estimates are consistent and very close to
the true parameter values as the sample size (number of lower Rv) increases. This is easily
observed from comparing the Biases and REs, Also, the lengths of the credible intervals

become narrower ag the sample of lower Rv increases.

information is provided by the sample and hence increases the accuracy of the estimates.

® From Tables 1 and 2, one can notice that the Biases and REs for the estimates of the
parameters, rf and hrf under LINEX loss function have less values than the corresponding
Biases and REs of the estimates under SEL, fanction.

® The constant ¢ determines the trend of the loss function. When overestimation is more
serious than under estimation, positive values of ¢ are used while negative values of ¢ is
used in reverse situations. For sma]] value of |c|, the loss is almost symmetric and q(a)
behaves similar to the Squared error loss function.

e  The results based on the real data ensure the Monte Carlo simulation results,

Cass D
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Table 1. Average estimates, biases, relative error and the length of 95% credible
interval for the parameters @, 9 and A based on lower record values under
the SEL function (N = 10000, a = 4.8, ¥ = 0.54 and A = 0.05 )

Appendix

Ry %) Average Bias RE Length
a 4.79766 0.00174 4.15356 e-07 0.00370
9 0.53616 0.00094 2.24607 e-06 0.00431
5 A 0.04840 0.00190 4.21608 e-05 0.00332
R(xp) 0.06325 0.00208 3.92559¢-06 0.00391
h(xg) 0.30784 0.00144 4.61681e-06 0.00277
a 4.79776 0.00126 3.14920 e-07 0.00352
9 0.53709 0.00070 4.20856 e-07 0.00359
7 A 0.05104 0.00073 220439 e-05 0.00309
R(xq) 0.06130 0.00017 2.18936 e-06 0.00269
h(xp) 0.30844 0.00095 3.44067¢-06 | 0.00253
a 4.79814 0.00120 2.14230 e-07 0.00254
v 0.53814 0.00058 2.35586 e-07 0.00248
10 A 0.05043 0.00062 1.47425 e-05 0.00185
R(x) 0.06100 0.00013 1.79785e-06 0.00199
h(xy) 0.30893 0.00035 1.00547e-06 0.00168
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Table 3 Estimates, biases, relative errors and the ,cmw& on
lower record values under the SEL function and real data

Ry o Estimate Bias v , RE
o 4.79707 0.00067 7.72093¢-08
'] 0.53809 0.00099 2.23857e-06
y! 0.05061 0.00031 4.27628e-06
y R(xg) 0.06150 0.00033 4.997019¢-06
h(xg) 0.30353 0.00396 3.106216e-05

,HaEa 4. Estimates, biases and relative errors based on lower record values under the LINEX loss function and real data

c=-0.1 c=0.01 c=0.1
Rv 0] k .
Estimate Bias RE Estimate Bias RE Estimate ias RE
«a 4.79570 0.00142 | 2.85423¢-07 | 4.79628 | 0.00139 | 2.75110e-07 | 4.79718 | 0.00110 | 2.60017¢-07
5 9 0.53655 0.00089 | 2.24589e-06 | 0.53723 | 0.00078 | 2.24430e-06 | 0.5359 | 0.00046 | 2.04268¢-06
A 0.04938 0.00192 | 4.12454e-05 | 0.05150 | 0.00186 | 4.12098e-05 |- 0.05056 | 0.00127 | 4.00239¢-05
R(xg) 0.06268 0.00078 | 3.22590 e-06 | 0.06186 | 0.00052 | 3.12560e-06 | 0.05961 | 0.00046 | 3.10189¢-06
h(xg) 0.30617 0.00134 | 4.56190e-06 | 0.30918 | 0.00120 | 4.45237¢-06 | 0.30588 | 0.00112 | 4.30105e-06
¢
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Table 2. Averages, biases, relative errors and the lengths of 95% credible interval for the parameters @, ¥ and A based on lower record
values under the LINEX loss function (¢ =48, 9 =0.54 and 1 = 0.05 )

) c=-0.1 c=0.01 c=0.1
- Average Bias RE Length Average Bias RE Length Average Bias RE Length

(=]

a 4.79749 | 0.00146 | 2.85443 ¢-07 | 0.00342 4.79750 0.00010 | 2.75117e-07 | 0.00250 4.79765 | 0.00008 | 2.69117¢-07 | 0.00385
9 0.53576 | 0.00093 | 2.24600 e-06 | 0.00381 0.53730 0.00079 | 2.24589¢-06 | 0.00301 0.53803 | 0.00059 2.14398¢-06 | 0.00361
A 0.05080 | 0.00189 | 4.12600 e-05 | 0.00535 0.05059 0.00168 | 4.12598¢-05 | 0.00456 0.05146 | 0.00157 | 4.00989¢-05 | 0.00323
R(xp)| 0.06025 | 0.00092 | 3.22593 e-06 0.00335 0.06239 0.00089 | 3.22590e-06 | 0.00252 0.06000 | 0.00065 | 3.12489¢-06 | 0.00206
h(xe)| 030778 | 0.00140 | 4.56187 e-06 | 0.00398 0.30659 0.00136 | 4.48187e-06 | 0.00243 0.30927 | 0.00127 | 4.35185¢-06 | 0.00370
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a 4.79494 | 0.00112 | 2.26878¢-07 | 0.00332 4.79783 0.00107 | 2.24920e-07 | 0.00242 4.79895 | 0.00100 1.34920er07
9 0.53553 | 0.00067 | 3.40586 e-07 | 0.00271 0.53768 0.00048 | 3.39486e-07 | 0.00251 0.53772 | 0.00030
A 0.05058 | 0.00069 | 2.20035-05 | 0.00421 0.04761 0.00062 | 2.19935¢-05 | 0.00298 0.04923 | 0.00048 | 2.07893e-05 | 0.00273
R(xp)| 0.06081 | 0.00036 | 2.17835¢-06 0.00290 0.06134 0.00025 | 2.17829¢-06 | 0.00210 0.06151 | 0.00017 | 2.00529¢-06 0.00189
h(xg)| 030798 | 0.00094 | 3.34176 e-06 | 0.00260 0.30867 0.00071 | 3.33987¢-06 | 0.00236 0.30739 | 0.00065 | 2.31687¢-06

; 0.00237
2.00486€-07 | 0.00285

0.00296
a 4.79752 | 0.00109 | 1.71898 e-07 | 0.00289 4.79802 0.00100 | 1.69898¢-07 | 0.00191 4.79976 | 0.00009 | 1.20253¢-07 | 0.00192
9 0.53582 | 0.00045 | 2.35570e-07 | 0.00256 0.53713 0.00035 | 2.34990e-07 | 0.00176 | 0.53899 0.00020 N.oooml.oq 0.00262

a 0.05149 | 0.00060 | 1.47314€-05 | 0.00316 0.05048 0.00049 | 1.47310e-05 | 0.00159 0.05057 | 0.00037 | 1.00235e-05 | 0.00197
R(x0)| 0.06108 | 0.00012 | 1.78765 ¢-06 0.00288 0.06050 0.00008 | 1.76765¢-06 | 0.00178 0.06139 | 0.00004 | 1.346286-06 | 0.00164
h(xg)| 030736 | 0.00033 1.00478 e-06 | 0.00185 0.30820 0.00029 | 1.00469¢-06 | 0.00200 0.30714 | 0.00016 | 1.00120e-06 | 0.00165
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